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Abstract 

Flowability and packing properties are essential for powder spreading and resulting part properties in 
powder bed fusion processes (PBF), such as selective laser sintering (SLS). In this contribution, powder 
requirements for SLS, structure-property relationships and appropriate methods for powder characterization are 
reviewed. Effects of particle size, particle shape and surface functionalization on flowability, packing density 
and tribo-charging will be discussed for commercial PA12 laser sintering powders (virgin vs. aged), polyolefin 
and polyester powders. The possibilities of dry particle coating as an efficient method to tailor powder 
flowability, bulk density and charging behavior are demonstrated. The capabilities of a Schulze ring shear 
tester, a powder tensile strength tester, a thermally controllable ring shear apparatus and a model experiment 
mimicking the powder spreading are discussed to assess SLS processability. 

Introduction 

Powder bed fusion processes (PBF), such as e.g. selective laser sintering (SLS) / laser sintering (LS), 
selective laser melting (SLM) or selective electron beam melting (SEBM), allow for manufacture of complex 
functional parts without the need for any tools or molds. Briefly, in these processes the part is built layer by 
layer from powders, which are selectively melted. In SLS, a thermoplastic powder –preferentially a semi-
crystalline polymer, mostly polyamide 12 (PA12)- is selectively melted by a laser (typically CO2, 10.6 μm 
wavelength): The manufacture is performed in SLS machines in a building chamber, which is typically heated 
to a process temperature slightly below the melting temperature of the respective polymer feed powder –in case 
of PA12 around 167 °C. First, the powder material is applied at a certain powder layer thickness (typically 
100 μm to 150 μm) to the building platform by means of a spreading unit, which frequently is either a rake or a 
roller coater. Then, the applied powder is selectively melted, where the later (solid) part is desired. Finally the 
building platform is lowered by around one powder layer thickness and a new building cycle starts with the 
powder spreading step. From this short sketch of the SLS process it already becomes obvious, that there are 
many factors that will affect processability and part quality in terms of e.g. dimensional accuracy and 
mechanical properties. Factors that influence SLS processability have been intensively discussed in literature 
(c.f. e.g. [1-5]) and are summarized in the scheme depicted in Figure 1. One can subdivide factors that 
determine SLS processability into intrinsic material properties and (extrinsic) bulk solid properties. Intrinsic 
material properties, like optical, thermal (melting temperature, solidification temperature, degree of 
crystallinity, heat capacity, thermal expansion coefficient) or rheological properties (melt viscosity) depend on 
the formulation of the plastic, i.e. type of polymer and its structure, the molar mass distribution, cross-linking, 
additive enhancement. The given material characteristics influence for example the so-called sintering window, 
which can be employed during PBF of polymers, i.e. the temperature difference between onset of melting and 
onset of solidification temperature or the melting and melt coalescence behavior and, thus, are e.g. important to 
identify proper building chamber temperature or energy input during laser illumination [6]. The extrinsic 
properties of the polymer powder, i.e. its bulk solid properties like flowability, packing characteristics (c.f. bulk 
vs. tapped density) depend mainly on inter particulate interactions, which are determined for example by the 
particle size distribution, the particle shape or the particle surface characteristics (surface roughness, surface 
chemistry). The mentioned particle characteristics are a function on the processes applied for particle formation 
and / or functionalization. 
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Within this account we will review techniques that allow for characterization of extrinsic SLS material 
properties, i.e. bulk solid and particle characteristics. Moreover, pathways for modification of powder systems 
for improvement of SLS processability will be exemplified. 

Figure 1: Overview on key characteristics of thermoplast powders influencing processability in selective laser 
sintering (SLS). 

Bulk solid characteristics of commercial SLS powders 

Most of the currently employed SLS powder by market share (> 90 %) is made up of polyamides (PA), 
mainly polyamide 12 (PA12) besides some PA11 and PA6. The PA12 materials are available as a standard 
grade but also as special grades e.g. enhanced with flame retardants or as glass, carbon or aluminum filled 
systems. PA particle systems for SLS typically are produced either by direct polymerization (c.f. Orgasol grades 
by Arkema) or precipitation (c.f. e.g. PA2200 (EOS) or DuraForm PA (3D Systems)). Besides PA powders, 
there are commercial SLS powders made up of polystyrene (PS), polypropylene (PP), thermoplastic eleastomers 
(TPE) or polyether ether ketone (PEEK) available [4-9]. For further information on commercial SLS particle 
systems and recent developments, please refer e.g. to [8] or [4]. SLS polymer powders also can be obtained by 
cryogenic grinding (c.f. PA1101 (EOS)), however, there can be issues with inferior flowability due to edged 
particle shapes being typical for comminution products [10] and, in consequence, inferior processability [11]. 
Commercial PA12 SLS powders of good processability typically have particle sizes between 45 μm and 90 μm. 
Moreover, they are often surface-functionalized with flowing aids (e.g. pyrogenic silica or alumina), which 
increases surface roughness and allows for minimization of particle interactions and, thus, improvement of 
flowability and packing density [12-18]. Figure 2 exemplarily depicts SEM pictures of PA2200 (EOS), a PA12 
SLS powder. The particle shape (Figure 2, left), which is often referred to as ‘potato-shape’, is typical for 
polymer particles produced by precipitation, more precisely liquid-liquid phase separation and subsequent 
crystallization (for details on this process, please refer to our recent work [18]). 
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Figure 2: Scanning electron microscopic (SEM) pictures of PA12 SLS powder PA2200 (EOS). Left: ‘potato-
shaped’ particles being typical for precipitated particles. Right: particle surface with flowing aid. 

The surface functionalization of PA2200 with flowing aid becomes obvious from the material contrast 
being visible in Figure 2, right. Furthermore, the PA2200 particles are characterized by a rather narrow particle 
size distribution with x10,3 = 45.8 μm, x50,3 = 61.4 μm, x90,3 = 81.0 μm and a span ((x10,3 - x90,3)/ x50,3) of 0.57. 
Narrow particle size distributions and the absence of fines is advantageous with respect to flowability and dense 
packing. To summarize, the key to optimization of PBF processability concerning bulk solid properties is 
control of 

(i) particle shape (rounded particle shapes are advantageous)
(ii) particle size distribution (narrow distribution is advantageous)
(iii) particle surface roughness (rough particles allow for reduction of inter particulate forces and, thus,

better flowability).
Strategies to achieve these goals will be discussed in the following section in line with methods for 
characterization of powder flowability and spreadability. 

Methods for characterization of powder flowability 

The determination of bulk solid properties at ambient temperature frequently already allows for a first 
assessment of the processability of the PBF material under process conditions. Powders of good flowability are 
essential, they typically show good spreadability during the powder deposition step and, thus, guarantee a dense 
and homogeneous powder layer and, consequently, parts of low porosity [9, 19, 20]. Various methods have 
been proposed so far, although there is no consensus, which method is most appropriate with respect to 
mimicking the stress conditions during powder spreading and, thus, reliable prediction of PBF processability. 

Hausner ratio and Carr index 
Frequently, as a rough estimate of flowability, the so-called Hausner ratio (HR) or the Carr index (C) are 

applied, see equations 1 and 2. Both aforementioned quantities describe the compressibility of powders, 
respectively, cohesion via the (non-consolidated) bulk density, ρρbulk, and the tapped density, ρ tapped. 

= (1) 

= 100
 

(2) 

The determination of these ratios seems rather straightforward and simple at a first glance, and, thus 
these flowability indicators are often used, although, there are some drawbacks: neither HR nor C are a direct 
measure for flowability, although, good flowability often correlates with low compressibility (c.f. Table 1). 
Moreover, bulk density and tapped density highly depend e.g. on the mode of filling a measurement cylinder for 
determination of the volume occupied by the bulk solid, or the mode of consolidation during tapping (tapping 
frequency, stroke, number of taps etc.) [21]. Thus, the obtained results may show a rather large variance, 
especially if no automated tapper devices are employed, i.e. if the powder consolidation instead is done 
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manually. However, these methods are among the few standardized flowability measurement procedures, which 
fuels their widespread application, despite their flaws. 

Shear testers 
Shear testers, like e.g. a ring shear cell, allow for the determination of powder flowability under well-

defined conditions [16, 18, 22] and, thus, the comparison of the flowability of different materials via the flow 
function ffc. The flow function is given as the ratio of consolidation stress σσ 1 and unconfined yield strength σc, 
see equation 3. The quantities σ1 and σc are determined via construction of two Mohr stress circles. 

= (3) 

Further details on the measurement procedure and shear cell geometry can be found e.g. in [16]. An 
assignment of flowability, flow function ffc (and Hausner ratio, HR) is given in Table 1. Figure 3 exemplifies 
flow functions determined for PA11 PBF materials at ambient temperature and demonstrates how flowing aids 
and the removal of fines help to improve powder flowability. 

Figure 3: Flowability of PA11 powders as determined by shear experiments using a Schulze ring shear tester: 
narrowing of particle size distribution and dry coating with flowing aids allow to tune flow behavior from 
cohesive (2 < ffc < 4, red open symbols) to easy flowing (ffc > 4, red filled squares). The flow function ffc of 
commercial PA1101 (EOS) PBF material is given for reference. 

The red open symbols depict the flow function of a PA11 powder obtained by liquid-liquid phase 
separation and (isothermal) precipitation of an injection molding grade Rilsan PA11 (Arkema) from ethanol at 
120 °C and 20-wt.% polymer concentration. The process for particle production is outlined in great detail in 
[18]. The as-obtained powder after precipitation is characterized by a volume-averaged particle size of 
x50,3 = 90 μm and a x10,3 of 27 μm and a x90,3 of 185 μm. The particle size distribution (PSD) is rather broad, as 
expressed by the span (x90,3 - x10,3) / x50,3 of the PSD of 1.76. This material behaves cohesive (2 < ffc < 4). For 
improvement of flowability, the PSD was narrowed by sieving and the sieved PA11 powder with x10,3 = 34 μm, 
x50,3 = 84 μm, x90,3 = 165 μm (span = 1.56) was dry coated with 0.5 wt.-% of hydrophobic fumed silica, c.f. red 
filled squares in Figure 3: the classified and functionalized powder now is easy flowing (ffc >4, HR = 1.21). 
Dry coating of micron-sized host particles with flowing aids (nano-sized guest particles) is a well-known 
approach to increase powder flowability [15, 17, 18, 23]. Briefly, the nanoscale guest particles act as spacers 
between the micron-sized host particles and, thus, reduce particle-particle interactions by lowering the van der 
Waals adhesion forces [14, 24, 25] being highly dependent on interparticulate distance. 

While shear testers allow for a well-reproducible determination of flowability, there is some criticism in 
using the obtained flow functions ffc for assessment of PBF processability, as ffc in shear testers typically is 
determined at rather high consolidation stresses that do not apply during powder spreading. Moreover, the 
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flowability of a pre-consolidated bulk solid is determined, which does not resemble the situation prior to 
powder spread in SLS machines. For example, if a rake is used for powder deposition, typically a non-
consolidated bulk solid is spread; also if a roller coated is used, the bulk solid is applied as non-consolidated 
powder and the consolidation stress is rather low. 

classification Flow function ffc / - Hausner ratio HR / - 
non-flowing < 1 

very cohesive 1 … 2 > 1.4
cohesive 2 … 4 1.25 … 1.4 

easy-flowing 4 … 10 1.1 … 1.25 
free-flowing > 10 < 1.1 

Table 1: Assignment of powder flowability: flow function ffc vs. Hausner ratio (HR) [21, 26]. 

Powder tensile tester 
One approach to determine flowability of non-consolidated powders is the determination of the powder 

tensile strength. The measurement principle is outlined in the sketch given in Figure 4, left and described in our 
previous work, e.g. [10, 23]. A photograph of the powder tensile tester is depicted in Figure 4, right. The main 
components of the powder tensile tester are a powder reservoir, which is mounted on a motorized stage 
allowing for movement in vertical direction, a force transducer connected to a stamp that is moved into the 
powder reservoir and soft- and hardware that allows for force measurement data acquisition. First, the powder 
to be measured is prepared as non-consolidated bulk solid, which can be achieved by sieving the powder into 
the reservoir and the powder surface is smoothed by a rake. Then, the powder reservoir is moved towards the 
stamp being mounted on a traverse connected to the force transducer and covered with a thin layer of adhesive 
(to allow for adhesion of the powder particles in the uppermost layer), see Figure 4, left. Upon contact with the 
powder layer, the stamp (slightly) penetrates the bulk solid until a certain (pre-set) maximal force is reached. 
Then, the motorized stage is stopped, the movement direction of the stage is reversed and the maximum force 
Fmax is registered. Due to the adhesive layer on the stamp of surface area Astamp, the uppermost particle layer is 
‘glued’ to the stamp surface, thus, when moving back the stamp, the bulk solid breaks between the uppermost 
and the neighboring powder layer. The layer adhesion force Flayer-layer can be determined from the maximum force 
Fmax corrected for the gravitational force Fgravity due to the particle mass adhering to the stamp. The powder tensile 
strength σσpowder then is 

=  (4)

Powder tensile strength, thus, gives a direct measure of the adhesion force between neighboring powder 
layers starting from the non-consolidated bulk solid. Good flowability correlates with low interparticulate 
interactions, i.e. low powder tensile strength. An example for the application of powder tensile strength 
measurements for characterization of powders for PBF of polymers is given in Figure 5. There, tensile strengths 
determined for different polystyrene (PS) microparticles of comparable particle size distribution, namely 
comminuted, irregular shaped PS particles [27], thermally rounded PS particles and comminuted and rounded 
PS particles that have been subjected to dry particle coating with a flowing aid (fumed silica) [10] are given. 
The data nicely confirm that change of shape (thermal rounding) and application of flowing aids (lowering 
interparticulate forces) are feasible strategies for improvement of flowability of PBF materials. 

While powder tensile strength gives information on particle interactions in the unconsolidated bulk 
under more or less static conditions, no insights into the powder spreading behavior under dynamic conditions 
are accessible by this approach. Here, besides powder rheometry, the rotational powder analyzer, funnel flow 
experiments, or powder spreading model experiments are an option [16, 17, 28]. 
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Figure 4: left: measurement principle of the powder tensile strength tester: (i) a stamp penetrates the non-
consolidated bulk solid, (ii) the uppermost powder layer adheres to the stamp, (iii) the stamp is separated from 
the powder, the bulk solid breaks between adjacent layers and (iv) the interlayer adhesion force Flayer-layer being a 
measure for flowability is accessible. Right: photograph of the powder tensile strength tester. 

Figure 5: Effect of particle shape and surface functionalization on powder flowability as determined by powder 
tensile strength measurements: rounding of comminuted polystyrene (PS) particles and application of flowing 
aids by dry coating allows for reduction of interparticulate forces (reduction of powder tensile strength) and, 
thus, improvement of flowability [10]. 

Dynamic tests: revolution powder analyzer, powder rheometer, powder spreading experiments 
For determination of flowability, different approaches have been discussed so far. For example, a so-

called revolution powder analyzer has been proposed. The device consists of a rotating cylinder being equipped 
with transparent (circular) walls that allow for optical determination of the avalanche angle of the powder in 
dependency of the rotational frequency of the cylinder. Thus, this method allows for assessment of flow under 
stress conditions that are similar to that during powder spreading, if (circumferential) rotational speed is set 
close to the translational speed of the powder spreading unit [1, 3, 22, 29]. Moreover, for characterization of 
flowability under dynamic conditions, the measurement of the fluidization behavior of the PBF materials (c.f. 
minimum fluidization velocity), funnel flow experiments or so-called powder rheometers [30] have been 
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proposed. In the powder rheometer, the resistance of a bulk solid against flow is assessed via measurement of 
the acting torques during movement of a rotating blade fixed to a shaft. Depending on the mode of operation, 
the method allows for determination of cohesiveness and flowability, thus gives results that often correlate with 
HR or results from shear experiments. An extensive discussion and comparison of several methods can be 
found in the literature, e.g. [1, 3,22]. 

Different powder spreader model setups have been proposed so far. For example van der Eynde et al. 
[28] proposed a device that consists of a powder spreading unit (rake with variable, known gap size) and a load
cell connected to a measurement plate (of known area), which –if the solid density of the material is known- 
allows for determination of the bulk density of the spread powder in dependence of e.g. gap height or spreader
speed. Thus, this device allows for determination of a modified HR under powder spreading conditions (at
ambient temperature). Powder spreading experiments on (typically black) model substrates with subsequent
image analysis of the area covered with PBF material have been proposed to compare the spreadability of
differently treated powders. For example, Blümel et al. [16] could show a good correlation between ffc
determined by shear experiments, powder tensile strength, surface coverage with PBF material in the model
powder spreading experiment and quality of laser sintered single layers for polyethylene powder coated with
different flowing aids. Schmidt et al. [17] could prove an analogous behavior for polybutylene terephthalate
(PBT) powders: powder tensile strength, surface coverage with PBT powder in spreading model experiments
and quality of SLS single layer specimen show a strong correlation as depicted in Figure 6.

Figure 6: Effect of particle shape (ground (left) vs. rounded and dry coated (right) of PBT powders on powder 
tensile strength (insets, top), surface coverage in the model powder spreading experiment ((19.1 +/- 4.2) % vs. 
(97.3 +/- 1.8) %, comminuted vs. rounded and dry coated) and quality of SLS single layers (bottom) [17]. 

Tribo charging of PBF powders during powder spreading 
A variant of the aforementioned powder spreading model setup has been recently proposed to assess the 

tribo charging of PA12 SLS powders of different ageing state during powder deposition. The model deposition 
experiments were performed at room temperature, the setup is depicted in Figure 7, top; the spreader unit has 
been complemented by a probe of an electrostatic voltmeter, that allows for measurement of surface potentials 
and, thus, surface charge. The electrostatic potential was monitored in dependence on position, the number of 
consecutive application steps and the ageing state of the powder. Figure 7, bottom depicts exemplarily results 
for an aged PA12 powder: tribo charging during powder deposition occurs and a charge accumulation, i.e. 
increase of potential and, thus, charge with increasing number of powder applications was noted. The charge 
built up also is a function of ageing state of the SLS material (virgin powder shows less tribo charging). A 
detailed discussion can be found in Hesse et al. [31]. 
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Figure 7: top: Model setup for determination of tribo charging during powder spreading; bottom: electrostatic 
surface potential during spreading of aged PA12 SLS powder [31]. 

Powder flowability at elevated temperatures 
While, as outlined in the previous sections, there have been proposed many setups and measurement 

protocols to characterize powder flowability of PBF materials under different stress conditions, most of these 
experiments were performed at ambient temperature, i.e. little attention has been paid on the effect of 
temperature on flowability. The effect of temperature on powder flowability is far from being negligible, as 
powder spreading in SLS is performed at building chamber temperature, which e.g. in the case of PA12 
typically is around 170 °C. Moreover, information on flowability at ambient conditions does not allow for an 
assessment of flowability at elevated temperature, as particle interactions, which determine powder flowability, 
can show complex and pronounced dependencies on temperature, as demonstrated in studies for organic matter 
(lactose, coffee, waxes) [32] or fly ashes [33, 34]. For example, adhesion forces can increase with increasing 
temperature due to changes in adsorption layers, liquid bridges, contact areas due to visco-plastic deformation, 
or flowability can decrease due to formation of solid bridges with beginning of sintering [32-38]. 
In a recent attempt, a (temperature-controlled) rheometer was modified with an appropriate measurement 
geometry that allows to perform shear experiments at elevated temperatures similar to the protocols employed 
in shear testers (see above). This is exemplified in Figure 8, which depicts the angle of internal friction ϕϕsf as 
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determined in dependency on temperature for virgin PA12 powder (PA2200, EOS). ϕϕsf is calculated from the 
shear stress  and the normal stress via ϕsf = tan ( / ). While steady state flow conditions are reached 
promptly for lower temperatures, at elevated temperatures  does reach a maximum value and starts 
declining rapidly afterwards. Therefore the evaluated states for higher temperatures are at maximum 
shear stress as opposed to steady state conditions for lower temperatures. Obviously, a pronounced 
decrease of flowability is notable starting from around 150 °C up to a temperature close to the melting 
temperature of the polymer under consideration, as reflected by the increase by the increase in the angle of 
internal friction. 

Figure 8: Temperature dependence of the angle of internal friction as determined for steady-flow conditions up 
to 150 °C and maximum shear stress above 150 °C for a PA12 SLS powder (PA2200, EOS). 

Conclusions 

In this contribution, different methods and experimental setups for assessment of bulk solid properties 
(flowability, packing density) relevant for processability of PBF materials were introduced and discussed. 
While the Hausner ratio (HR), i.e. the quotient of tapped density and (loose) bulk density, is frequently applied, 
one should keep in mind that the obtained results might be misleading, because HR is not a measure of powder 
flow, although for many materials a correlation of (small) HR and good flowability was found empirically. 
Moreover, the mode of powder consolidation and the measurement geometries can influence the result. Shear 
testers allow for reliable measurement of flowability (via the flow function ffc) under well-defined conditions; a 
positive correlation of large ffc value, small powder tensile strength and small HR was found for precipitated 
PA11 powder. Although, the stress conditions typically applied during the shear experiments are quite different 
from that during powder application. Consequently, powder spreading model experiments mimicking stress 
conditions during powder spreading are an alternative approach to characterize e.g. surface coverage with SLS 
powders or the tribo charging of the materials. The aforementioned characterization methods, so far, typically 
were performed room temperature. Characterization of flowability at process temperature, which can be quite 
different from that at ambient conditions, remains a challenge for future work. 
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